This is a wrapper function for Normalise()
, which offers a simpler syntax but less flexibility. It
normalises a data frame using a specified function f_n
which is used to normalise each column, with
additional function arguments passed by f_n_para
. By default, f_n = "n_minmax"
and f_n_para
is
set so that the columns of x
are normalised using the min-max method, between 0 and 100.
Usage
# S3 method for class 'data.frame'
qNormalise(x, f_n = "n_minmax", f_n_para = NULL, directions = NULL, ...)
Arguments
- x
A numeric data frame
- f_n
Name of a normalisation function (as a string) to apply to each column of
x
. Default"n_minmax"
.- f_n_para
Any further arguments to pass to
f_n
, as a named list. Iff_n = "n_minmax"
, this defaults tolist(l_u = c(0,100))
(scale between 0 and 100).- directions
An optional data frame containing the following columns:
iCode
The indicator code, corresponding to the column names of the data frameDirection
numeric vector with entries either-1
or1
Ifdirections
is not specified, the directions will all be assigned as1
. Non-numeric columns do not need to have directions assigned.
- ...
arguments passed to or from other methods.
Details
Essentially, this function is similar to Normalise()
but brings parameters into the function arguments
rather than being wrapped in a list. It also does not allow individual normalisation.
See Normalise()
documentation for more details, and vignette("normalise")
.
Examples
# some made up data
X <- data.frame(uCode = letters[1:10],
a = runif(10),
b = runif(10)*100)
# normalise (defaults to min-max)
qNormalise(X)
#> uCode a b
#> 1 a 72.674546 0.000000
#> 2 b 54.294419 100.000000
#> 3 c 24.795524 63.509916
#> 4 d 26.664329 96.224015
#> 5 e 5.394857 36.498074
#> 6 f 60.895229 78.206968
#> 7 g 100.000000 3.645011
#> 8 h 0.000000 9.413429
#> 9 i 89.699042 57.508121
#> 10 j 91.257956 59.682932