Compares two coin class objects using a specified iCode
(column of data) from specified data sets.
Usage
compare_coins(
coin1,
coin2,
dset,
iCode,
also_get = NULL,
compare_by = "ranks",
sort_by = NULL,
decreasing = FALSE
)
Arguments
- coin1
A coin class object
- coin2
A coin class object
- dset
A data set that is found in
.$Data
.- iCode
The name of a column that is found in
.$Data[[dset]]
.- also_get
Optional metadata columns to attach to the table: see
get_data()
.- compare_by
Either
"ranks"
which produces a comparison using ranks, or else"scores"
, which instead uses scores. Note that scores may be very different if the methodology is different from one coin to another, e.g. for different normalisation methods.- sort_by
Optionally, a column name of the output data frame to sort rows by. Can be either
"coin.1"
,"coin.2"
,"Diff"
,"Abs.diff"
or possibly a column name imported usingalso_get
.- decreasing
Argument to pass to
order()
: how to sort.
Examples
# build full example coin
coin <- build_example_coin(quietly = TRUE)
# copy coin
coin2 <- coin
# change to prank function (percentile ranks)
# we don't need to specify any additional parameters (f_n_para) here
coin2$Log$Normalise$global_specs <- list(f_n = "n_prank")
# regenerate
coin2 <- Regen(coin2)
# compare index, sort by absolute rank difference
compare_coins(coin, coin2, dset = "Aggregated", iCode = "Index",
sort_by = "Abs.diff", decreasing = TRUE)
#> uCode coin.1 coin.2 Diff Abs.diff
#> 43 PRT 27 17 10 10
#> 29 LAO 48 39 9 9
#> 33 MLT 10 19 -9 9
#> 14 EST 22 16 6 6
#> 21 IDN 43 49 -6 6
#> 13 ESP 19 24 -5 5
#> 19 HRV 18 23 -5 5
#> 30 LTU 16 11 5 5
#> 35 MNG 44 48 -4 4
#> 17 GBR 15 12 3 3
#> 25 JPN 34 31 3 3
#> 32 LVA 23 20 3 3
#> 40 PAK 50 47 3 3
#> 3 BEL 5 7 -2 2
#> 4 BGD 46 44 2 2
#> 8 CHN 49 51 -2 2
#> 20 HUN 20 22 -2 2
#> 23 IRL 12 14 -2 2
#> 26 KAZ 47 45 2 2
#> 28 KOR 31 33 -2 2
#> 31 LUX 8 10 -2 2
#> 37 NLD 2 4 -2 2
#> 41 PHL 38 40 -2 2
#> 42 POL 26 28 -2 2
#> 47 SVK 24 26 -2 2
#> 48 SVN 11 9 2 2
#> 2 AUT 7 6 1 1
#> 5 BGR 30 29 1 1
#> 6 BRN 40 41 -1 1
#> 9 CYP 29 30 -1 1
#> 10 CZE 17 18 -1 1
#> 11 DEU 9 8 1 1
#> 12 DNK 3 2 1 1
#> 22 IND 45 46 -1 1
#> 24 ITA 28 27 1 1
#> 27 KHM 37 36 1 1
#> 34 MMR 41 42 -1 1
#> 36 MYS 39 38 1 1
#> 38 NOR 4 3 1 1
#> 39 NZL 33 34 -1 1
#> 45 RUS 51 50 1 1
#> 46 SGP 14 15 -1 1
#> 49 SWE 6 5 1 1
#> 50 THA 42 43 -1 1
#> 51 VNM 36 37 -1 1
#> 1 AUS 35 35 0 0
#> 7 CHE 1 1 0 0
#> 15 FIN 13 13 0 0
#> 16 FRA 21 21 0 0
#> 18 GRC 32 32 0 0
#> 44 ROU 25 25 0 0