Given a numeric data frame Y with rows indexed by a time vector tt, interpolates at time values
specified by the vector tt_est. If tt_est is not in tt, will create new rows in the data frame
corresponding to these interpolated points.
Arguments
- Y
A data frame with all numeric columns
- tt
A time vector with length equal to
nrow(Y), indexing the rows inY.- tt_est
A time vector of points to interpolate in
Y. IfNULL, will attempt to interpolate all points inY(you may need to adjust theruleargument ofstats::approx()here). Note that points not specified intt_estwill not be interpolated.tt_estdoes not need to be a subset oftt.- ...
Further arguments to pass to
stats::approx()other thanx,yandxout.
Value
A list with:
.$ttthe vector of time points, including time values of interpolated points.$Ythe corresponding interpolated data frame
Both outputs are sorted by tt.
Details
This is a wrapper for stats::approx(), with some differences. In the first place, stats::approx() is
applied to each column of Y, using tt each time as the corresponding time vector indexing Y. Interpolated
values are generated at points specified in tt_est but these are appended to the existing data (whereas
stats::approx() will only return the interpolated points and nothing else). Further arguments to
stats::approx() can be passed using the ... argument.
Examples
# a time vector
tt <- 2011:2020
# two random vectors with some missing values
y1 <- runif(10)
y2 <- runif(10)
y1[2] <- y1[5] <- NA
y2[3] <- y2[5] <- NA
# make into df
Y <- data.frame(y1, y2)
# interpolate for time = 2012
Y_int <- approx_df(Y, tt, 2012)
Y_int$Y
#> y1 y2
#> 1 0.894915818 0.1376303
#> 2 0.830897179 0.0622309
#> 3 0.766878539 NA
#> 4 0.414541042 0.6655709
#> 5 NA NA
#> 6 0.511333802 0.9136983
#> 7 0.743476679 0.8937201
#> 8 0.888419045 0.0897850
#> 9 0.612988593 0.5389992
#> 10 0.003176101 0.4564761
# notice Y_int$y2 is unchanged since at 2012 it did not have NA value
stopifnot(identical(Y_int$Y$y2, y2))
# interpolate at value not in tt
approx_df(Y, tt, 2015.5)
#> $tt
#> [1] 2011.0 2012.0 2013.0 2014.0 2015.0 2015.5 2016.0 2017.0 2018.0 2019.0
#> [11] 2020.0
#>
#> $Y
#> y1 y2
#> 1 0.894915818 0.1376303
#> 2 NA 0.0622309
#> 3 0.766878539 NA
#> 4 0.414541042 0.6655709
#> 5 NA NA
#> 6 0.487135612 0.8516664
#> 7 0.511333802 0.9136983
#> 8 0.743476679 0.8937201
#> 9 0.888419045 0.0897850
#> 10 0.612988593 0.5389992
#> 11 0.003176101 0.4564761
#>